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We study the low-temperature phase of the nearest-neighbor Ising spin glass. 
Our analysis of gauge-invariant ground state Peierls contours suggests the 
existence of infinitely many disjoint Gibbs states at low temperatures, provided 
the dimension, d, is sufficiently large (presumably d >  3 or 4), while for d =  2 the 
Gibbs state is unique for all temperatures. In d ~> 3 we present arguments sup- 
porting the existence of a massless phase with broken spin-flip symmetry at low 
temperatures. 
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1. I N T R O D U C T I O N  

Spin glasses are among the least understood systems in equilibrium 
statistical mechanics. In particular, their low-temperature regime and 
critical behavior are to a large extent unknown; even the very existence of a 
spin glass phase transition in three and more dimensions is under 
dispute.~l 3) 

This lack of understanding is due to the fact that not only do we not 
know of any adequate analytical methods to cope with the spin glass 
problem, but even numerical (Monte Carlo, etc.) studies meet with for- 
midable difficulties: The dynamical stochastic processes set up to simulate 
equilibrium states fail to actually reach equilibrium in available computer 
times if the temperature is low. Hence, so far, all computer studies, even 
when performed on optimized special purpose computers, were confined to 
rather high temperatures. ~4,5) 

Analytical investigations have focused attention on the mean field 
model of Sherington and Kirkpatrick. ~6) Using the replica trick and the 
concept of replica symmetry breaking, Parisi et  aL ~7'8) have obtained a 
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rather appealing picture of the low-temperature phase of this model: 
There exist infinitely many extremal Gibbs states at very low temperature, 
forming a space with an ultrametric topology, which may be arranged in a 
generation tree. As the temperature is raised, states within increasing dis- 
tance from each other coalesce until above a certain freezing temperature 
the equilibrium state is unique. 

Although this picture is rather nice, its derivation suffers from some 
shortcomings. First, the Sherrington-Kirkpatrick model with its infinite 
range interaction is somewhat unphysical. In particular, being really a 
model in infinitely many dimensions, it cannot reflect the dependence of 
various properties of spin glasses on dimension. Second, the use of the 
replica trick in this context is disputable. The replica symmetry breaking 
scheme of Parisi provides a computational method that gives physically 
sensible results, but its mathematical status is still mysterious. 

Given the wide range of phenomena which have been described by 
spin glass models during the last ten years, reaching beyond the magnetic 
alloys they were invented for (9) to studies of questions in biology and the 
theory of memory and computer science, (1~ the poor theoretical situation 
is quite unsatisfactory, and new approaches to the problem seem desirable. 

In this paper we propose to study the short-range Ising spin glass 
(Edwards-Anderson model ~11)) in zero magnetic field using a geometric, 
gauge-invariant formulation. The basic objects in this formulation are the 
distribution of frustration, (~2) which is the essential element of disorder in 
the system, and the Peierls contours that describe the distribution of the 
energy in a given configuration. 

Specifically, we study the Hamiltonian 

Hs= ~ Jo.a,aj (1.1) 
(i]> 

where ai are Ising spins, Ja are independent random variables, and (~}  are 
nearest-neighbor bonds on a lattice ~d. 

In this paper we propose theoretical arguments supporting the 
following conjectures: 

(i) In dimension less than three there is a unique Gibbs state at all 
temperatures and presumably no phase transition at finite tem- 
perature. 

(ii) In three dimensions, below some temperature To, a spin glass 
phase with divergent correlation length and broken spin-flip sym- 
metry appears. (However, for all temperatures T> 0, there exist 
at most two extremal Gibbs states related to each other by a 
global spin flip.) 
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(iii) Above some critical dimension d (presumably equal to three), 
there exist infinitely many "dominant" ground states separated by 
infinite energy barriers, which at low enough temperature, give 
rise to infinitely many disjoint extremal Gibbs states. 

The question of the existence of many extremal equilibrium states will be 
seen to be tied to a question concerning interface fluctuations in a random 
environment. A precise formulation will be given later, but we wish to note 
that interfaces and Bloch walls in an Ising spin glass have much larger fluc- 
tuations than in the Ising ferromagnet and hence tend to be delocalized in 
three dimensions. We expect their Hausdorff dimension to be larger than 
d - 1 .  

This paper is organized as follows. In the next section, we present the 
gauge-invariant formulation of the model (1.1) and discuss the ensuing 
geometrical structure. In Sec. 3 we analyze the distribution of frustration 
using some ideas from percolation theory. These results will provide a 
useful basis for the analysis of the ground state structure that we present in 
subsequent sections. Some of the results in Sec. 3 represent joint work with 
Michael Aizenman. In Sec. 4 we discuss some general features of ground 
states in our models and their relation to Gibbs states at low temperature. 
In Sec. 5 we study the low-energy excitations above an arbitrary 
groundstate. We estimate the density of low-energy excitations as a 
function of energy and argue that in three or more dimensions there exist 
excitations that are capable of producing long-range correlations. In Sec. 6 
we investigate the possible existence of many disjoint Gibbs states. We 
present arguments that in two dimensions the Gibbs state is unique, for all 
temperatures, whereas in sufficiently high dimensions one should expect 
that there are infinitely many disjoint Gibbs states at low enough tem- 
perature. In Sec. 7, we summarize our main conclusions, discuss some 
important thresholds in the spin glass problem, relate them to percolation 
thresholds, and finally describe some open problems. A sketch of our 
arguments has appeared in Ref. 13. 

2. GAUGE 1NVARIANT F O R M U L A T I O N  
OF A SPIN GLASS M O D E L  

We consider a spin glass with Hamiltonian 2 

H , =  - Y~ Jo~,as 
(ij> 

(2.1) 

2 The external magnetic field is zero. 
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where ai takes the values _+ 1. The Jij are independent random variables 
whose distribution we choose as follows: 

d p ( J ) =  ( x g ( - J ) +  ( l - x )  g(J))dJ (2.2) 

where g is some nonnegative function with support on the positive reals, 
and 

I dJg(J)= 1 (2.3) 

A fairly common choice for g is 

g ( J ) = 6 ( J o - J  ) (2.4) 

The singular distribution (2.4) may create some special features like 
residual entropy at T = 0 ,  O4) but otherwise the explicit form of the 
distribution of J is expected to be rather unimportant. 

By (2.2), the sign of J is distributed according to a Bernoulli bond 
percolation process with density x. This fact will be used frequently. 

We notice that our model has some gauge invariance. Consider the 
transformations 

oi--~ a~ = aiai (2.5) 

Jij  ~ Jo" = ais jJ i j  (2.6) 

where si ~ { + 1, - 1 }. Clearly 

Hj,(a') = Hs(a ) (2.7) 

Thus spin glasses with gauge-equivalent configurations, J and aT', of 
exchange couplings [-see (2.6)] describe the same magnetic system, as long 
as the external field vanishes. 

An immediate consequence of this gauge invariance is the vanishing of 
the averaged magnetization when x equals 1/2. (14) Namely, in this case the 
distribution of Ju, (2.2), is also invariant under the transformation (2.6), 
and therefore we have 

<#) <6) 

= ~o f I~ dP(Jb)(ao)s' = go m (2.8) 
<0> 

Choosing eo = - 1 (and all the others + 1), this yields m = - m, i.e., m = 0. 
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One may ask to what extent the randomness of the signs of the 
couplings Jo can be gauged away by gauge transformations. 

Clearly, a complete removal would only be possible if every J0 were of 
the form JiJi" (This is the case in the Mattis model. (15)) To characterize the 
deviation of a configuration Ju from such a trivial one, it is useful to 
introduce the concept of ''frustration. ''(~21 Let us denote by p a plaquette 
(or elementary two cell) of the lattice. Define 

Zp= I ]  sign(J0) (2.9) 
<U>~ap 

We say that p is "frustrated" whenever rp = - 1. One easily verifies that ~p 
is gauge invariant and that, for trivial configurations, Zp is positive on all 
plaquettes. Furthermore, gauge inequivalent configurations of J j s  give rise 
to different configurations of frustrated plaquettes. 

It is convenient to associate frustration with cells in the dual lattice, 
i.e., in two dimensions we associate frustration with the sites dual to the 
frustrated plaquettes, in three dimensions with the dual bonds, and in 
general with the dual (d-2)-cells.  We denote the resulting sets dual to 
frustrated plaquettes by qs. 

In three dimensions, the set q5 consists of a collection of (possibly 
unbounded) loops. This important property is easily understood if we con- 
sider an elementary cube c in the direct lattice. If a line in q5 were to end in 
this cube, an odd number of them would have to enter it, and thus the 
quantity 

1-[ ~p 
p~Oc 

would have to be negative. But 

]-1 Vp - [ I  (sign(Jo)) 2 ~ + 1 (2.10) 

which proves that no frustration line may end in any cube; hence it must 
form a loop. Relation (2.10) is (in differential geometric language) known 
as the Bianchi identity. 

In general, (2.10) shows that no complex made of (d-2)-cel ls  dual to 
frustrated plaquettes may end in any cube. Thus, in general, frustrated pla- 
quettes are dual to closed complexes of (d-2)-cells.  

A further ingredient for a complete gauge-invariant description of our 
model is the notion of gauge-invariant Peierls contours. 

Connected components of the set of cells (0")* dual to bonds (0") 
with sign(Joaiaj)= - 1  are called Peierls contours and are denoted by 7. 
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Furthermore, F denotes the set of all Peierls contours in a given con- 
figuration of spins. 

In unfrustrated systems Peierts contours form a collection of loops 
(resp. closed surfaces, d-1-complexes).  In the presence of frustration this 
is no longer the case. By the very definition of frustration, an odd number 
of bonds of a frustrated plaquette must be energetically unfavorable, i.e., 
must be dual to a cell of a Peierls contour. Therefore the frustration 
network ~ forms the boundary of the Peierls contours, i.e. (see also Fig. 1), 

ar=cb (2.11) 

(Note that we are considering an infinite system at the moment. 
Appropriate modifications for finite systems with boundaries will be 
discussed is Sec. 4.) 

We may now express the energy of a configuration of spins entirely in 
terms of gauge-invariant quantities, namely, 

E ( F ) = 2  ~ IJu[ (2.12) 
(U>*~F 

; I ; ~ T 'o # I I 

~.. i-I-: ~ �9 !-i-~1-r1-1 
~__ __c~, ~j;-~^~ 

-F--l-!-'[-i[ 1 I .I. I i-ITl-~,., ~ , " 

' . .  H-i ' i4 - -4 -  q-' ' 
, -~--Ti-T'~ ] -  " i 

i " i I I 

Fig. 1. Sites dual to frustrated plaquettes (crosses), bonds with negative Jq (dotted lines), 
and Peierls contours (solid lines) in a configuration with all spins up. 
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(This is the value the Hamiltonian takes on a spin configuration whose 
Peierls contours are given by F, up to an overall constant.) 

We conclude that a complete gauge-invariant description of the spin 
glass involves specifying 

(i) the frustration network r 

(ii) the moduli of the couplings, IJejl 

(iii) a global sign of the spin configuration 

It is useful to exhibit also the gauge degrees of freedom in geometrical 
terms. Consider contours, B, that consist of cells dual to bonds ( l j )  for 
which Jo is negative. Again, a frustrated plaquette has by definition an odd 
number of such bonds in its boundary, and thus the cell dual to it is in the 
boundary of an odd number of elementary cells of a B-contour. Therefore 
again 

c3B = ~ (2.13) 

A gauge transformation (2.6) acts on these B-contours as a deformation 
that leaves their boundary invariant. 

The B-contours give us another way of visualizing the frustration 
network. The cells dual to negative bonds are simply distributed according 
to a Bernoulli (d-1)-cel l  percolation process. By (2.13), the frustration 
network q5 is nothing but the boundary (mod 2) of such a cell complex. 
The fact that in three dimensions q~ is made of loops is a direct con- 
sequence of this observation. 

Finally we may consider another type of contours, namely those 
across which spins are flipped, i.e., the Bloch walls. Bloch walls are, 
however, easily expressed in terms of the F and B contours. For, if a spin 
flip occurs across some dual cell, then either this cell belongs to a F-con- 
tour and not to a B-contour, or it belongs to a B-contour and not to a F- 
contour. Thus the Bloch walls, W, are just the symmetric difference of the 
F- and B-contours, 

W= FAB 

(The symmetric difference of two sets 
(A u B)\(A ~ B).) 

Since 0 F =  ~?B = ~b, we see that 

(2.14) 

A, B is defined as AAB= 

as must be. 
Clearly knowledge of the Bloch walls allows one to reconstruct the 

configuration of the spins {cri} up to a global spin flip. By (2.14), this can 

~ W = ~  (2.15) 
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Fig. 2. Sites dual to frustrated plaquettes (crosses), Peierls contours (solid lines), and con- 
tours dual to bonds with negative J (dotted lines). The shaded regions have spins down, the 
blank ones spin up. 

be done if we know the Peierls contours and the Jij configuration (i.e., the 
B-contours).  An arrangement of frustration, F- and B-contours, and the 
corresponding spin configurations in two dimensions is shown in Fig. 2. 

To illustrate once more the connection between the spins and the 
Peierls contours, let us consider what happens if we flip all the spins within 
a region, D, say. Clearly, contours can change only on the boundary of the 
dual of D, •D*. If an element of this boundary had been an element of a 
Peierls contour before the flip, it will no longer be one afterwards, and vice 
versa; i.e., a spin flip within D interchanges Peierls contours with non- 
Peierls contours on (?D*. 

3. PERCOLATION OF FRUSTATION 

We have seen in the last section that the negative sign of the couplings 
J,j are distributed according to a Bernoulli bond percolation process (16) 
with density x. From this fact it is possible to infer a considerable amount  
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of information on the distribution of frustation. This is done in the present 
section. 

Since the nature of "frustration networks" is quite different in two and 
in higher dimensions, we treat these cases essentially separately. The main 
results of this section are described in the following two lemmas. 

Lemma 3.1. In two dimensions we have: 

(i) If x = 1/2, frustrated plaquettes are independently distributed with 
density 1/2. 

(ii) For  x near 1/2, frustrated plaquettes star-percolate, i.e., there 
exists an infinite, star-connected cluster of frustrated plaquettes, two 
plaquettes being considered connected if they have at least one point in 
common. 

(iii) For  all x, the probability that a frustrated plaquette is far away 
from the next one is very small. Specifically, let e(D) be the event that a 
frustrated plaquette is surrounded by a disk D free of frustration. Then 

[2x(1 - x ) ]  IDI %(x)<,Prob{e(D)} <~ [X2-~ (1 --x)Z]lDI-Sc(x) (3.1) 

where 

1 
e(x) = x2 + (1 - x) 2 { (1 - x)2[-(3x(1 - x) 2 + x3)(3x2(1 - x) + (1 - -  x ) 3 )  3 ] 

+ x2[(3x(1 - x) 2 + x3)3(3x2(1 - x) + (1 - x)3)] } (3.2) 

Furthermore, let r(D) be the length of the shortest path connecting the 
frustrated plaquette with the exterior of D. Then, for fixed r(D), we have 

Prob{e(D)} ~ xr(m(1 + O(x)) {resp. (1 - x)r(m(1 + O(1 - x ) ) }  (3.3) 

asymptotically as x ~ 0 {resp. x --+ l }. 

k e m r n a  3.2. In dimensions d greater or equal to three: 

(i) If x =  1/2, frustrated plaquettes are "almost" independently dis- 
tributed, that is, the only correlations are due to the constraint that the 
(d-2) -ce l l s  dual to frustrated plaquettes form closed complexes. 

(ii) For  x "near" 1/2, there exists a unique, infinite connected cluster, 
~oo, of (d-2) -ce l l s  dual to frustrated plaquettes. 3 

A remark on what is meant by "near 1/2" in these statements is 
appropriate. The results claimed are most easily obtained for x = 1/2. To be 
sure they are relevant for the spin glass (whose behavior should not depend 

3 This result was first obtained by Michael Aizenman. 
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dramatically on x being exactly equal to 1/2), we must extend them to a 
neighborhood of 1/2. In order to have simple and transparent proofs, we 
do not endeavor getting optimal results on the range of x. We will, 
however, occasionally give some numerical values for what is to be con- 
sidered "near" in reality. 

Let us now show how such results are derived. 
First of all, one may calculate the average density of frustrated pla- 

quettes, i.e., the probability that a given plaquette, p, is frustrated 

P r o b { r p = - l } = ~ - 8  x -  (3.4) 

Unfortunately, this is not enough information to calculate the probabilities 
of more complicated events, since frustrated plaquettes are not indepen- 
dently distributed. 

To overcome this difficulty, we want to derive bounds for expectation 
values in terms of expectations in a simple Bernoulli ensemble of indepen- 
dently distributed plaquettes. More precisely, we will show that there is a 
Bernoulli process with some density (depending on x and equal to 1/2 if 
x = 1/2) such that expectations of positive events in this ensemble are 
uniform lower bounds for the expectations of the corresponding events in 
the ensemble of frustrated plaquettes. 

Let A, be a set of n plaquettes. We propose to estimate the probability 
that all the plaquettes of A, are frustrated (the plaquettes not belonging to 
A, may or may not be frustrated). Call this event c~,. We define inductively 
certain classes of sets A,. Let d ~  be all sets consisting of a single plaquette. 
We say that A, E d ~  if by cutting no more than k edges a plaquette p can 
be removed from A,, and the resulting set is contained in d ~ _  1. (Clearly, 
in two dimensions all sets of n plaquettes belong to d ] . )  

We now prove the following bounds: 
If A~ ~ d ~ ,  then 

Prob{a.} ~> [4x3(1 - x) + 4(1 - x)3x] ~ (3.5) 

If A. ~ d 2, then 

If A. e d 3, then 

Prob{c~,} ~> [2x(1 - x)]" (3.6) 

Prob{e.} >~ x n (3.7) 

[(3.7) holds for x <  1/2. For x >  1/2, the bound is (1 - x ) ' . ]  
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For x - -  1/2 we get in all three cases the equality 

Prob{c~, } = (1/2)" (3.8) 

(Note that in three and more dimensions there exist sets that are not con- 
tained in any one of the above classes.) 

All these estimates are easily proven by induction. Let us exemplify 
this for the case (3.6). Suppose it holds for n - 1 .  By definition we can 
decompose any set An e d ]  into a plaquette p and a set A~ ~ such that p 
and A._~ share no more than two bonds. We have thus 

4 

f dp( 0) f,Hl-= dp(J,) zero_ ,l z u , =  - 11 (3.9t Prob{e~} 

where J~ and J2 are the bonds shared by p and A. ~, while J3 and J4 are 
the remaining bonds of p. Distinguishing the possible cases, we get 

Prob{a,}  = f I] dP(Jo) f dJ, dJ2z[e,_,] 
<~>r 

x [g(-J1) g(-J~) 2x3(I -x)+ g(J,) g(L) 2x(I -x) ~ 

+ (g(-J,) g(J2) + g(J1) g( - J2))(x(1 - -  X) 3 -[-  X 3 ( 1  - -  X))] 

=f ~ dp(Jij) Z[~n_l] 2 x ( 1 - x )  
<g> 

<U> ~Op 

x 4  x -  x(1 -x)(g(-Jl)  g(J2)+ g(J,) g(-Ja)) (3.10) 

Since ~n-1 is independent of J~ and J2, the first term in the sum is simply 
2x(1 - x )  Prob{~,  ~}. The second is postive and vanishes for x =  1/2. This 
proves (3.6) and (3.8) for k = 2. The other relations are proven in the same 
manner. 

Quantitatively, the error commited in throwing away the second term 
in (3.10) can be fairly large. In fact, with some extra work it should be 
possible to prove that (3.5) holds in all three cases. 

Part (i) of Lemma 3.1 follows now directly from (3.8). Part (ii) follows 
from the fact that in two dimensions all sets of plaquettes are in class d 3. 
Thus we have the uniform lower bounds (3.7) corresponding to ordinary 
percolation. Since it is known that two-dimensional site percolation 
processes star-percolate above a critical density Pc strictly less than 1/2, 
frustration star-percolates certainly if 2x(1 - x) > Pc. 
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To prove part (iii), let us first consider the event that the four 
neighbors Pl,..., P4 of a plaquette p are all unfrustrated, given that p is 
frustrated. One easily finds, just counting possibilities, 

Prob{vpi = + 1, i = 1,..., 4[Vp = - 1 } 

1 
x 2 + (1 - x) 2 

x {(1 - x)2[(3x(1 - x) 2 + x3)(3xZ(1 - x) + (1 - x ) 3 )  3 ] 

+ x 2 [ ( 3 x ( 1 - x ) 2 + x 3 ) 3 ( 3 x 2 ( I - x ) + ( 1 - x ) 3 ) ] } - c ( x )  (3.11) 

Note that this is a small number for all possible values of x. 
Equation(3.1)  is then obtained in the same fashion as Eq. (3.6), 

reducing the disk D, one plaquatte after another, using the inequality 

2x(1 - x )  P r o b { e ( D \ p ) }  <~ Prob{e(D) } ~< [-(x 2 + (1 - x )  2] Prob{e(D~p) } 

(3.12) 

which is obtained through a calculation analogous to Eq. (3.10), until we 
are left with just four plaquettes adjacent to the frustrated one, for which 
we then use (3.11). 

The asymptotic behavior for x small [resp. ( l - x )  small], (3.3), 
follows from the fact that in order to have no frustrated plaquette a dis- 
tance r away from a given one requires the existence of at least r negative 
[resp. positive] bond variables J0.. 4 Thus the leading term in a power-series 
expansion of Prob{e(D)} is of the form const x x "(D) [resp. ( 1 - x ) ' ( m ] .  

Let us now turn to three or more dimensions. In this case there clearly 
are sets of plaquettes that are in none of the classes ~ ,  for k = 1, 2, 3. For  
events in ~ 4  there is no immediate bound like (3.5) (3.8). However, any 
set not in d ] must contain a closed surface. We may now reduce a set A n 
not in d 3, as outlined in the proof above, until we reach a closed surface, 
5~, that we cannot further reduce in this way. Let [5~[ be equal to 2k. 
(Obviously, the number of plaquettes in a closed surface is even.) Suppose 
2 k -  1 of these plaquettes are frustrated. Then due to the loop constraints, 
the last plaquette is necessarily frustrated, as well. Thus if we remove any 
plaquette from 5 p, we have 

Prob{5 p } = Prob{SP\p} > Prob{oW\p} x (3.13) 

Using this fact, we may establish (3.7) for all possible sets of n plaquet- 
tes in three dimensions. Note, however, that, since (3.13) involves a strict 

4 Here and throughout this paper all distances are measured in units of the lattice spacing. 



Theory of the Spin Glass Phase 359 

inequality even if x =  1/2, (3.8) does not hold in general in dimensions 
greater than two. This, of course, reflects the existence of the nontrivial 
constraints that cells dual to frustrated plaquettes must form closed 
networks. 

We now turn to the proof of Lemma 3.2. We specialize to three dimen- 
sions for easier visualization, and also because it is the most difficult case. 
The strategy in higher dimensions is exactly the same. 

Consider a two-dimensional sublattice consisting of two adjacent lat- 
tice planes: 

Lea {i6 ~e3* ] i =  * * = a + n e x + m e y + e e * , m , n ~ , e ~ { O ,  1}} (3.14) 

Clearly, any set An dual to a set A* ~ Le ~ belongs to d 3. Thus the 
bonds in Lea dual to frustrated plaquettes are independently distributed for 
x - -  1/2, while in general they satisfy (3.7). 

Now note that p = 1/2 is the threshold for bond percolation in two 
dimensions. Percolation in a double layer is more likely and occurs above 
some critical density that is strictly lower than 0.45. To see why this is true, 
consider the two lattice planes L1 and L2 that make up Lea. We may define 
effective bond weights, f~j, on the bonds in L1, by setting f,j = - 1 if either 
the bond ( 0 )  is dual to a frustrated plaquette, or if the three bonds in Lea 
forming a "bridge" over (0") are dual to frustrated plaquettes. Obviously, if 
the density of frustrated plaquettes is x, then the density of bonds with 
negative weights is equal to x + x3(1 - x ) .  The negative f ij are not indepen- 
dently distributed (not even if x =  1/2), but using the results above and 
similar arguments one may show that expectations of positive events are 
bounded by expectations in a Bernoulli bond percolation ensemble with 
density ~ = x + ( 1 - x ) x  3 [for x < l / 2 ;  for x > l / 2  interchange x and 
1 - x.] If 0.55 > x > 0.45, this density is above 1/2 and bonds with negative 

f,j percolate. (16) But then the bonds dual to frustrated plaquettes in Lea 
must also percolate. 5 

The double layers Lea may be used as building blocks for more com- 
plicated events. The important feature for this to work is that if in two 
intersecting double layers clusters of negative weights intersect, then the 
same is true for the real frustration. 

The first result we want to derive from the existence of percolation in 
double layers is the existence of a unique, infinite cluster of frustration if 
0.55 > x > 0.45 [-see remark above]. The existence of an infinite cluster is 
already proven, since there exists one even in each double layer. We are left 
to show the uniqueness. For  this, suppose there are two pieces of the 
infinite clusters entering a cubic box of side length L but that do not inter- 

5 This estimate for the percolation threshold of x = 0.45 is clearly too high. The actual value is 
more likely to be around 0.23. 
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sect inside it. We claim that, with probability one, they are connected out- 
side of the box. To show this we place six double layers parallel to the six 
sides of the box and a distance R away from its center. 

Clearly, each of the two pieces of infinite clusters has to cross at least 
one of the double layers. If we show that with sufficiently large probability 
these intersection points are connected within these double layers, then we 
are done. To show that this is in fact the case, it suffices to use again our 
bounds in terms of Bernoulli percolation with density x. As we have seen 
before, in such an ensemble there is an infinite cluster with a positive den- 
sity 4o in each double layer. Thus with probability > ~o 2 both pieces inter- 
sect one of these infinite clusters. Furthermore, with a probability larger 
than 36 the six infinite clusters in the double layers form one connected net- 
work. (Note that we are dealing with a Bernoulli ensemble in order to 
derive our bounds.) Hence a connection between the two pieces is achieved 
with probability at least ~g, within these six double layers, independent of 
their distance R from the cube's center. Since there are infinitely many such 
sets of double layers, the probability that a connection is achieved in some 
of them is, by the BoreLCantelli lemma, equal to one. This finishes the 
proof of Lemma 3.2. 

It seems worthwhile to stress at this point that the study of frustration 
networks constitutes in itself an interesting problem of percolation theory 
that has, to our knowledge, not received much attention so far. 

An interesting feature of the problem is that it may be studied from 
two quite different points of view. One way to look at it is to consider the 
frustrated plaquettes, which are correlated random variables, as the basic 
objects and to study their distribution. The other is to start from the cells 
dual to negative Jifs, which are independently distributed, and investigate 
the structure of their Y'2-boundary. The percolation threshold for this 
boundary apparently characterizes a new critical point in the bond per- 
colation model. 

We have done some preliminary and rather pedestrian numerical 
simulations on this model on an IBM PC AT. We were working with a 
maximal lattice size of 30 x 30 x 30. Our results indicate that the critical 
density x b for the appearance of an infinite frustration network is 

xb = 0.081 _+ 0.005 (resp. 0.919) (3.15) 

Furthermore, the density of the infinite frustration network apparently 
goes to zero at this point continuously with a power law 

Poo ~ (x- -  xb) ~ (3.16) 
where 

/3e~ 0.3 + 0.1 (3.17) 
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This probability can be made quite close to one by choosing 2 somewhat 
large, but only of the order of In L. Such sharply localized events will be 
used in Section 6 to argue that there are long-range correlations at low 
temperature. 

4. T H E  G E N E R A L  S T R U C T U R E  OF G R O U N D  S T A T E S  

The low-temperature regime of a spin glass is governed, as we argue, 
by the peculiarities of the structure of its ground states. In the present sec- 
tion we provide the conceptual armament to exhibit these ground state 
properties and to relate them to finite temperature quantities. We feel that 
such conceptual clarification is useful and necessary in view of the con- 
siderable confusion that permeates the spin glass literature regarding these 
questions. We will follow to some extent Ref. 17 and use the infinite system 
formalism. 

As in the previous chapters, F denotes a collection of Peierls contours 
71,..., 7n, in ~d,  which are either closed, or whose boundary is in the 
frustration network ~b. More precisely, we have 0 F =  q~. Recall that, given 
the configuration of couplings, {Ju}, F determines the configuration of 
spins, but only up to a global spin-flip. Thus, although we will call F a "con- 
figuration" sometimes, we keep in mind that it corresponds to two different 
spin configurations, (F, a), with ~ { + , -  } denoting the global spin 
orientation. 

To define thermodynamic quantities, we have to consider restrictions 
of our system to finite volumes, A. We denote the restriction of ~ to A by 
q5 A, and the restriction of F to A by FA. Note that whereas for the infinite 
system OF= qs, the finite volume restrictions satisfy 

0FA = ~bA w (Fc~ 0A) (4.1) 

The set Fc~ 0A specifies the boundary conditions (b.c.) F imposes on 
the box A, again up to the global spin-flip specification. In two dimensions, 
it consists of a set of sites which are to be considered as "frustrated." The 
b.c. are always such that the number of sites dual to frustrated plaquettes 
inside A plus the number of these additional frustrated sites in 0A is even. 
In three dimensions, the b.c. are lines in 0A, such that ~/i A w ( F n  0A) is a 
collection of loops, etc. 

Let us now define a set, GA, of configurations that minimize the 
energy locally: We say that FeG~, if and only if for all F '  such that 
r'~= r~, 

E(F'A ) >~ E(FA) (4.2) 



Theory of the Spin Glass Phase 361 

Pmo  

0.5 

i 
t 

I I l I I I I I I 

0.I 0.2 x 
Fig. 3. Density of the largest connected cluster of bonds dual to frustrated plaquettes as a 

function of x. 

Our measured data are presented in Fig. 3. Obviously, these results are 
very qualitative, and we do not claim high accuracy or reliability. A more 
serious numerical study of this system would be rather useful. 

Before closing this section we will give another example of how double 
layers may be used to construct interesting events. Consider a cylinder 
made of four rectangular pieces of double layers, of size L x 2, the sides of 
length 2 being glued together. We denote by C ( L ,  2) the event that a 
frustration loop winds around this cylinder within these double layers. 
Clearly this event occurs if a loop of bonds with negative effective weights 
fo winds around it. Suppose this does not happen. Then, there must be a 
path of dual bonds crossing the cylinder from the left to the right, such that 
none of these bonds crosses an "effectively frustrated" bond. But it is well 
known that if the direct bonds percolate, then the probability that two 
points are connected by a path as described decays exponentially with their 
distance. (16) The probability of a left-right crossing of the cylinder is thus 
easily bounded from above by 

4L e-m3, 
m 

where rn > 0. Thus 

Prob{C(L,  2)} > 1 
4 L e  - m). 

m 

(3.18) 

(3.19) 

822/44/3-4-6 
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Note that, if A is a bounded subset of ~a, E(FA) is finite and well defined 
for all F. 

A "ground state contour" is now defined as a contour, F, which belongs 
to G A for all finite boxes A. Thus the set, N, of all ground state contours is 
defined as 

~ =  0 GA (4.3) 
A finite 

We stress again that to each F e  ~ there correspond two ground state 
configurations of spins, (F, + ) and (F, - ), with the same Peierls contours, 
but differing by a global spin-flip. 

A simple observation shows that two ground states cannot differ in 
energy by more than a surface term, in any finite box A. For, suppose F 1 
and F 2 are in G and that 

E(I~A) -- E(F~A ) > E(OA) (4.4) 

Then, consider a contour F, coinciding with F 1 inside A, with F 2 outside A, 
and which has some additional contours in ~?A pasting together the two 
pieces. Then, obviously, 

E(FA) <<. E(F~) + E(OA ) < E(F2A) (4.5) 

which contradicts the assumption that F 2 e G A. 

This result shows, in particular, that a unique ground state energy den- 
sity exists, which is independent of the particular ground state considered. 

We need some precise concepts to characterize ground state con- 
figurations, and in particular to quantify by "how much" two ground states 
differ. The first such concept we want to introduce is that of "strong 
equivalence classes" of ground states. 

Roughly speaking, a strong equivalence class shall encompass ground 
states that are not distinguished by different boundary conditions in the 
limit when the size of the box A goes to infinity, and that are thus 
contained in the support of the same extremal Gibbs state, even as the 
temperature tends to zero. 

To make this concept precise, consider the symmetric difference, 
/.1 A/"2 of two ground states,/ .1 and/ .2 .  Clearly, since 3F1= 01 "2 = 05, the 
boundary c3(/"1 A/" 2) of/.1 j / .2  in the interior of any box A is empty, i.e., 

~?[(/.1 A/.2)A] ~ OA (4.6) 

However, two entirely different situations may arise: 

(i) /.1 A/.2 is the disjoint 6 union of finite, closed surfaces, 7 SL 
= 1, 2, 3 ..... We then say t h a t / . i  is strongly equivalent t o / . 2 , / . 1  Z / .2 .  

6 We allow closed surfaces to touch, however. 
7 We use here and elsewhere the generic name "surface" for (d-  1 )-complexes. 
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(ii) F ~ A F  2 contains an infinite, connected, surface, which we denote 
by I F  ~AF2]oo. In this case, the restriction of F ~ A F  2 to any (large 
enough!) box A has boundary in ~A, and we say that F ~ A F  2 has non- 
empty boundary at infinity. F ~ and F 2 are then called strongly inequivalent. 

R E M A R K S  

(i) As defined above, the notion of strong equivalence may in general 
have the deficiency not to be "transitive." That  is to say, there are situations 
where a state F 1 may be called equivalent to F 2, and likewise F 3 equivalent 
to F 2, whereas F 1 would not be equivalent to F 3 according to the above 
definition 8 It is then, however, desirable to put also F 1 ~ ~ F 3. This way we 
can define the minimal transitive extension of our relation ~ ~, which is 
then appropriate  to define strong equivalence classes. Formally this can be 
achieved by defining a family of relations ,-~ o, ~ 1, ~ 2 ..... where ~ 0 is the 
relation as defined above, and 

i~I L v2 

iff there exists a ground state F 3 such that 

F 1 i l l  F 3 and F2 i•1 F3 

Finally, F 1 is said to be equivalent to F 2, iff F ~ ~ n F 2, for some n. 

(ii) It is important  to notice that for two ground states to be strongly 
inequivalent F 1 A F  2 must have a boundary already in f inite boxes. Thus if 
we construct two ground states by taking the limit of two finite volume 
ground states with two different sequences of boundary conditions, the 
resulting limiting states will be strongly inequivalent only if their symmetric 
difference is sufficiently localized, i.e., passes with finite probability through 
specified finite boxes A. 

Strong equivalence has been defined so far for ground state contours. It 
can be extended to configurations of spins by attributing a contour at 
infinity to (F, + ) A ( F , - )  and hence calling (F, + )  and ( F , - - )  
inequivalent. It is easy to see that F 1 ~ ~ F 2 implies that all the four con- 
figurations (F  1, + ), (F  1, - ) ,  (F  2, + ), and (F  2, - )  are inequivalent, while 
F ~ ~ ' F  s implies that (F  1, + )  is equivalent to exactly one of the two 
realization (F  2, a), a = + or --.  

Note that for arbitrary states F ~ S F  ~, F ' ~ s F  2, ( F A F ' ) o , =  
(F  ~ AF2)~ .  In fact, this statement should be regarded as the precise 
definition of (F  1 AF2)~ .  

8 We are grateful to M. Aizenman for having pointed out this problem to us. 
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We see, that since O[(F 1 ZJ/'2)oo]A • ~ for all (large enough) boxes A, 
ground states in different strong equivalence classes are always dis- 
tinguished by boundary conditions on any family of boxes which increase 
to y,d. 

It is useful to introduce, furthermore, an alternative, somewhat more 
topological way of describing ground states, which will provide another 
appealing characterization of strong equivalence classes. 

With a collection of contours, F, we may associate a function (or co- 
chain), Or, on the bonds by setting 

I - 1 ,  i f { 0 ) * e F  
Or(i, j)  = (4.7) 

+1,  if {0")* ~ F  

Taking the symmetric difference of two contours corresponds then to 
taking the product of the corresponding co-chains, i.e., 

Ocl~r2(i, j)  = Orffi, j)" Or2(i, j )  (4.8) 

The boundary operation, too, has a simple interpretation in terms of 
exterior derivatives, i.e., 

Oor = d o t  (4.9) 

Thus Eq. (4.6) may now be written as 

dO r~ Ar2 = O (4.10) 

which is to say that Or~r2 is closed. But this, clearly, does not imply that 
Order2 is exact. In fact, when Order2 is exact, i.e., 

Orl~r2 = dOD (4.1 1) 

for some subset D of ~a ,  we call F 1 and F 2 strongly equivalent. 
While strong equivalence classes are useful to investigate the structure 

of Gibbs states at zero temperature, the situation at finite temperature is 
more subtle. There are two principal questions we must consider. One con- 
cerns the spectrum of excitations above a given ground state, the other the 
existence of energy barriers between two states. 

Let us first turn to the question of the excitation spectrum. In general, 
guided by the Pigorov-Sinai theory, ~18,19) one expects a ground state to be 
associated with an extremal Gibbs state only if it is dominant, (19) i.e., if the 
spectrum of excitations above it is maximal, in the following sense. Let 
PA(F, ~), be the number of excitations above a ground state F that differ in 
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energy from EA(F ) by less than 3. 9 Let further the "excitation density," 
p(F, 3), be the coefficient of the term proportional to IAI contributing to 
pA(F, 3), i.e., the number of "connected" excitations of energy ~<3 in A. 
Then, F is called dominant, if 

f e =a dp(F, 3)>l f e-~a dp(F',3) 

for all other ground states F', for some a < 00. 
Note that the definition of "dominance" involves only the bulk quan- 

tity p(F, 6). Thus, in short-range models, e.g., the Edwards-Anderson 
model, two ground states, F 1 and F 2, may have a different excitation den- 
sity only if the corresponding contours differ "everywhere," i.e., F 1 AF 2 has 
Hausdorff dimension equal to the dimension of the lattice, d. 

Let us suppose now that F 1 is a dominant ground state. Then, in the 
equivalence class of F 2 there is a state p2 with contour given by p2 = 
F ~ d[F  ~ AF2"]oo. Thus ~2 is also dominant, if [1-1 3/-2]00 is a surface of 
codimension greater than zero, by the above arguments. We expect that 
this is the typical situation in the spin glass model (at least in dimensions 
greater than three), and that therefore to each equivalence class there 
belongs at least one dominant ground state. 

Next we address the more difficult question of energy barriers between 
ground states. It is essential for the understanding of the properties of spin 
glasses. The exact definition of energy barrier that is appropriate is not 
entirely obvious or unique. We give a definition inspired by the droplet 
picture (2~ and the Peierls argument (2u that yields reliable predictions in 
cases where the Pirogov-Sinai theory applies and in other cases where the 
correct answer is known. 

Let (F ~, 0 -1) and (F  2, a 2) be two ground state configurations. We want 
to know the excess energy it costs to switch (F  ~, o-~) into (F  2, o -2) within a 
region A. Thus, let, for A' _ A, ~Ad, be the set of all configurations (/-, a) 
such that (F, Cr)A = (F 1, al)A and (/7, a)A,C = (F 2, •2)A,C, We define 1~ 

AEA[(F ~, al), (F  2, a2)] - m i n { i n f  inf (E(Fa,)-  E(/~A,)), 1 ,--, 2} 

(4.12) 

Of course, we are interested in making I Af large. The right finite quan- 
tity to extract is clearly the rate of growth of AEA as ]A] ---, oo. Thus we are 
prompted to define 

1 A((F ~, a~), (F 2, a2))= lira i n f - - I n +  [ZlEA[(F 1, al), (F 2, a2)]] (4.13) 
[AI~ cx~ lnlA[ 

9In Ref. 19 one deals with a quantity na(F, e) which is related to our p by pA(F, 6)=  
~ + *  de ha(F, e). The reason why we prefer to introduce p is that in our case we do not in 
general expect discrete spectrum. 

to As D. Fisher pointed out to us, this quantity should perhaps be called a twist modulus. 
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Here 

t lnx,  i fx~>l  
In+ x = (4.14) 

0, ifx~< 1 

The definition of A suggests the definition of "weak equivalence classes" 
of ground states, putting 

(/~1 0-1) ,~w (/-2 0.2) iff z~((/~1, 0-1), ( F  2, 0 .2 ) )=0  (4.15) 

From the analysis of known examples, we may reasonably expect a 
close relationship between weak equivalence classes and low-temperature 
extremal Gibbs states, even though A does not take into account entropy 
contributions. To get aquainted with this concept, let us mention the 
following examples. 

(i) One-dimensional Ising model, long-range interaction 
There are two ground states with empty contour F0 = ~ ,  (F0, +) ,  

and (Fo, - ). If the interaction behaves as Jij ,.~ t i - j l  -~, we find 

~ E . [ ( r o ,  + ), ( to ,  - ) ]  = l i - j l - ~  ~ Iil ~ + 1  

]il < Ia[ /2  
UI > IAI/2 

const, 

lnlAI, 

O < i < ]A]/2  

i f ~ > 2  

if~ = 2 

i f ~ < 2  

and thus 

(4.16) 

0, i f ~ > 2  
A [ ( F 0 , + ) , ( F o , - ) ] =  ( 2 - ~ ) ,  i f ~ < 2  (4.17) 

Now, it is known that, for ~ ~< 2, there exist at least two disjoint extremal 
Gibbs states at low enough temperature, <2='23) while for ~ > 2  the Gibbs 
state is unique at all positive temperatures. Hence, in these models the con- 
dition A[(Fo, +) ,  ( F o , - ) ]  > 0  is sufficient to conclude the existence of 
two disjoint Gibbs states. The model with ~ = 2 is a borderline case with 
logarithmically growing energy barrier. Our criterion may therefore .not 
give the correct prediction in this case. It is now known ~23) that it has a 
transition, but this situation is very delicate and changes once Ising spins 
are replaced by N-vector (N~> 2) spins. Our criterion also makes correct 
predictions for the N-vector model, as follows from the results in Ref. 24. 
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(ii) Interfaces in d-dimensional nearest-neighbor Ising models 
It is known that in the nearest neighbor Ising model there exist dis- 

joint Gibbs states that differ by "interfaces" of dimension 11 down to 
two. (25'26) Now note that, if there are two ground states (F  1, a 1) and 
(F 2, a2) such that F 1 3F  2 is made of two "surfaces" of dimension D some 
finite distance apart, then 

D - 1  AE(F 1, ~rl), (F 2, ~r2)] - (4.18) 
d 

implying that such surfaces do not fluctuate once their dimension is bigger 
than one, thus yielding the correct prediction. 

Observe that in this case we could refine our criterion by taking the 
entropy contributions into account: For two states (F 1, cr 1) and (F  2, ~r 2) 
whose symmetric difference is a surface of dimension D, 
z J [ - ( / ~ l  0.1), ( / " 2  0.2)] must be bigger or equal to ( D -  1)/d, since this is the 
size of the entropy contribution. Evidently, this stronger criterion is 
automatically satisfied and the result does not change. 

We expect that the last observation will also apply in the spin glass: 
either 3 will be zero, or, if it is positive, it will always be at least as big as 
the entropy term (at least if spin-flip symmetry is broken). 

The energy barriers defined above are in general quite difficult to 
calculate. It is thus useful to introduce a simpler and more geometric alter- 
native, which is more easily verified, and which we expect to be equivalent 
to the one above, /f  the global spin-flip symmetry is broken. 

Let F 1 and F 2 be two ground state configurations, 12 and AA(I "1, i-2) 
the minimal area of the holes of ( [ U  xJ/'Z]co)A in •A. Then let 

1 
z~(/"1, F 2) ~-- lira ln+(AA(F 1, F2)) (4.19) 

IAI ~ ov 

We clearly have the inequality 

3(F1, F2)/> 3(F1,/"2) (4.20) 

If the spin-flip symmetry is broken (we expect this to be the case in 
dimensions >~3), we even expect that equality holds for almost all ground 
states. Namely, consider a ground state (/", + ) and its spin-flipped coun- 
terpart (F, - ) .  We expect that 

d - 1  
3((F, +), (F, - ) ) = - -  (4.21) 

d 

ix Dimension in this context is unders tood to mean the n u mb er  of dimensions in which the 
object under  considerat ion has infinite extent. 

12 We suppress  henceforth the global spin indicator a if no confusion can arise. 
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If A((F, + ), (F, --)) is smaller than this value, one might expect a 
restoration of the spin-flip symmetry (the entropy, i.e., the number of 
possible droplets, becomes dominant over the energy barrier). If on the 
other hand A((F, +), (F, - ) ) =  (d-1) /d ,  it is natural to expect that the 
energy barrier is in general proportional to the area of the holes in 
[ F ~ AF 2] oo c~ c3A, and that thus equality holds in (4.20). 

An interesting feature of J that is worth mentioning is that since 

A ~ ( r  ~, r ~) <. AA(F 1, F 2 ) -{- AA([ "2, F 3 ) (4.22) 

3 defines an ultrametric, i.e., zT is a metric and further 

A(F ~, F 3) = max{3(F','F2), A(F 2, F3)}, i fA(F 1, F 2) r  2, F 3) (4.23) 

This fact may be of particular interest in view of the discussion of 
ultrametric topologies on the space of extremal Gibbs states in the 
Sherrington-Kirkpatrick model in the context of "replica symmetry 
breaking" by M6zard et al. (8~ The ultrametric discussed there, the so-called 
"overlap parameter" q~, is rather different from our A but may, however, 
also be given a natural geometric interpretation in the Edwards-Anderson 
model. It is defined as 

1 
q~e-  lim ~ (a~)~ ( a , )~  (4.24) 

where c~ and fl label two extremal Gibbs states. Supposing, for the time 
being, that c~ and fl have support concentrated on two ground states, F ~ 
and F ~, we find 

vol(F~ 3F~)~ 
= lira 1 (4.25) 

q~'a I A I ~  ~-Ai 

i.e., q~B measures the number of spins that must be flipped to deform F ~ 
into F ~. It is somewhat disturbing that this quantity does not seem to dis- 
cern the global topological features of the symmetric differences, and it 
appears thus on the level of ground states not to be the appropriate metric. 
(We note, however, that if IJu] can  fluctuate, q~ only involves global dif- 
ferences!) The quantity q~ appears to be, in any case, relevant for 
dynamical aspects, more than for equilibrium properties. 

Finally, it may be noteworthy that the above spaces of equivalence 
classes are naturally endowed with further mathematical structure. Namely, 
for a fixed frustration network qs, we may consider the set G(q~), defined as 

a ( e )  = { r  I  r21 r ' = e,  0 r2=  e }  (4.26) 
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Clearly, G(~b) forms a group, which is most easily checked by con- 
sidering the associated co-chains 8r~ar2. The group structure on G(qs) 
induces a group structure also on the associated sets of (weak or strong) 
equivalence classes. Denote by I-F] the strong equivalence class of F, and 
let 

[/-1 ,s = {~1A~21~1E [E l ] ,  ~2~ I-F2] } (4.27) 

Then 
G~(q,) = { I T  ~ AT2]  I 8T ' =d , ,  aT2 = d,} (4.28) 

The elements of the set GS(~b) are homology classes represented by the 
forms Orl~r 2. 

The same construction can obviously be done with weak equivalence 
classes, thereby generating a group GW(qO). 

5. LOW-ENERGY EXCITATIONS 
A N D  L O N G - R A N G E  CORRELATIONS 

In this section we discuss the spectrum of excitations near a given 
ground state, i.e., local fluctuations with small energy at fixed boundary 
conditions. There are two facts we want to establish. First, the spectrum of 
such fluctuations extends down to zero energy. Second, and most impor- 
tantly, in three and more dimensions there are, with large probability, low- 
energy excitations that cause long-range correlations between the values of 
spins at two sites x and y with I x -  Yl arbitrarily large. 

The fluctuations of lowest possible energy are of course due to possible 
ground state degeneracies. Whether such degeneracies are present or not 
depends on the form of the J-distribution. If it is concentrated on a set of 
discrete values (e.g. _+ 1), then there are many degenerate ground states, 
and the number of them, as we shall see, grows exponentially with the 
volume of the box we consider. But if the J-distribution is continuous, 
exact degeneracies are arbitrarily unlikely, simply since two real numbers 
are unequal, with probability one. 

This difference will, however, not be very important, except at T =  0, 
where true degeneracies can give rise to residaal entropy and the like. As 
soon as T is nonzero, the important quantities are the number pA(6) of 
states in a small, but finite interval, 6, of energies above the ground state 
energy. For  this quantity we again find 

RA(3) ~" p(f)[A[ + O(IA] 2) 

with p(6) ~ 0 as 6 ~ 0. Here p(6) is the number of connected configurations 
of energy < 6 above the ground state energy, per unit volume. 
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The degeneracy of the ground states in the discrete case was first 
proven by Avron et aL (~4) for the two-dimensional model. They showed 
that with finite probability there exists, in a small region Ao of the lattice, 
an arrangement of frustrated plaquettes that supports at least two minimal 
contours, no matter what the external configuration is like. If the volume of 
this region is ]Aol and the probability for this configuration of frustrations 
is p, then, in a box of volume IA], one expects plAI/IAoJ such con- 
figurations, and there are thus (2 p/IA~ degenerate ground states. 

It is very easy to show that the same holds in three dimensions. A 
possible arrangement consists of three 2 x 2 frustration loops placed at a 
distance one behind each other, and enclosed in a 5 x 5 x 5 box which is 
otherwise free of frustration (see Fig. 4). 

Obviously this occurs with a finite probability (which we do not care 
to calculate explicitly) if 0 < x < 1. For  all boundary conditions that one 
may impose on this box, the ground state contour within it is twofold 
degenerate. 

The same argument shows that in the case of a continuous dis- 
tribution, pA(6)>~constlAI, for any 3 > 0 .  One only has to observe that 
with finite probability the values of the IJuI in the above arrangement are 
such that the two states differ in energy only by 6 > 0 and one of them is 
the ground state. 

Unfortunately such simple considerations only give rather crude 
results. In particular, a more precise prediction of the behavior of the den- 

Fig. 4. 

/ 

L/ 

/ 

Three frustration loops enclosed in an otherwise unfrustrated box that supports at 
least two degenerate ground state configurations. 



372 Bovier and Fr6hlich 

sity of "connected" states with energy near the ground state energy appears 
difficult to obtain. 

A question we are most interested in is whether there are excitations of 
low energy that can correlate spins which are very far apart. To see how 
such correlations may come about, expand an extremal Gibbs state d# for- 
mally into a series of measures concentrated on particular excitations, i.e., 

d # = l  ~ e-~Ei dp i (5.1) 

where d# i is concentrated on a class of configurations i, with energy U 
above the ground state energy, and Z is the appropriate normalization fac- 
tor. Suppose there is a configuration i such that the spins ax and ay are 
flipped in i relative to the ground state, and which cannot be decomposed 
into two disjoint excitations i x and iy that have one spin flipped, but not 
the other, and for which U = U x + Uy. Then, this configuration contributes 
a term to the connected two-point function (ax;O-y) which is of order 
exp(-~U)/Z. In a ferromagnetic Ising model, one easily sees that the 
energy of such a configuration is at least O([x-yl), and hence we get 
exponential decay at small temperatures. In the three-dimensional spin 
glass, due to the presence of a dense frustration network, the energy of such 
excitations can be much lower, and thus there may not be exponential 
decay of correlations. 

Of course, to arrive at this conclusion, we must also assume that there 
are no other terms of the same magnitude in which the relative orientation 
of the two spins ax and ay is reversed, and which could therefore cancel the 
original term and destroy the long-range correlation. This would arise if 
the global spin-flip symmetry were unbroken. Pictorially speaking, if the 
slain-flip symmetry is unbroken, correlations over long distances that could 
arise from coherent spin-flips within a domainS2 are destroyed by 
incoherent spin-flips inside large droplets D c f2. However, if  the spin-flip 
symmetry is broken, such additional flips cost too much energy, i.e., have 
small probability, and hence correlations persist. More precisely, if the 
spin-flip symmetry is broken, the probability of finding a droplet D ~ f2 
surrounding x or y, but not both, with the property that the spins within D 
may be flipped without significantly changing the energy of the con- 
figuration, is strictly less than 1, uniformly in ]x - y[. 

As we will argue in the next section, global spin-flip symmetry appears 
to be unbroken in two dimensions, and hence we do not expect long-range 
correlations there. In three and more dimensions, however, the two-dimen- 
sional argument breaks down, and we will argue, though not prove, that 
the global spin-flip symmetry is broken in this case. This conjecture is sup- 
ported by numerical evidence. (4) 
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It is easy to prove rigorously that excitations of finite energy 
correlating ax and ay exist with probability O(exp(-klx-yl)), using 
arguments very similar to those used to prove the ground state degeneracy, 
for all x e (0, 1). However, this is clearly not what we need; it obviously 
does not imply that the averaged two-point functions do not have exponen- 
tial decay. (In fact, this conclusion would be false for low density of 
frustration, in which case we know the correlation length to be finite for 
small temperatures(14)! ) 

For x near 1/2, however, we expect that such excitations exist with 
much larger probability (i.e., with a probability that does not decay 
exponentially with the distance between x and y!), and in the remainder of 
this section we give a heuristic argument supporting their existence. More 
precisely, we argue that with "large" probability there exists an environ- 
ment of frustration loops for which there is a ground state and excited 
states with energies only a little above the ground state energy and that 
differ by having all spins flipped within a tube of arbitrary length R. To be 
precise, we must show that neither the probability for this decays exponen- 
tially with R, nor does the energy of the excitation grow linearly with R. 

In order to do this we return to the "cylinder" events that we have 
constructed at the end of Sec. 3. Consider a tube of length R and cross-sec- 
tion L x L. We may cover it with cylinders of the form L x L x 2 made of 
double layers. Now we have shown that the probability that there is no 
frustration loop winding around such a cylinder within the double layers is 
less than 4L exp(-m2)/m. The individual cylinder events are independent 
if x = 1/2, and almost so if x is near 1/2. Thus the probability that n con- 
secutive cylinder events fail to occur somewhere on the tube is bounded by 

-~ e -m). (5.2) 

Therefore, the probability that the minimal area between two con- 
secutive loops on the tube is larger than the minimal area across one loop 
is bounded above by 

R/4L)o L )\L/4r { L (  )}  - . ~ _  e _ m .  ~ - R 1 4L 
- -  l n - - - - m  ( 5 . 3 )  = ~- exp ~ m 

If 2 is chosen such that 

2 > 1 In 4__L_L (5.4) 
m m 
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this probability can be made arbitrarily small by choosing L somewhat 
large, i.e., 

ln(R/,~) 
L >  (5.5) 

m - ( l / k )  In (4L/m) 

That is, 2 must be of the order of in L = In In R. In the absence of further 
frustration loops, the ground state configuration of such a tube then simply 
consists of minimal surfaces spanned between consecutive pairs of cylin- 
ders. (See Fig. 5.) 

Suppose now we flip all the spins within the tube. The resulting Peierls 
contours are as drawn in Fig. 6. 

What is the typical energy difference between these two con- 
figurations? First of all, we have to add the two "lids" at the ends of the 
tube, which costs an energy of order 2L 2. Second, we interchange the 
covered with the uncovered areas on the tube. Since the areas between two 
cylinders are essentially independent random variables, for large R we 

Fig. 5. Ground  state configuration of Peierls contours  (shaded area) on a tube. 
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Fig. 6. Resulting contour after all spins within the tube have been flipped. 

invoke the central limit theorem to estimate this difference. The covariance 
of the single pieces of surface is roughly 4L2/c, where c = m2 - ln(4L/m). 

The difference between the covered surfaces, and thus the energy dif- 
ference is thus a Gaussian random variable with mean 2L 2 and variance 
2x/~4L2/c.  Thus the probability, P, that flipping all the spins within the 
tube costs an energy between E and E+ AE is 

AE 1 ( ( E - Z L 2 )  2 
P -  x/~ 2x/~ (4L/c) exp _ 2 - ~ 4 L ~ J  (5.6) 

1 { (E - ( l nR)2 )2~  
A E ~  exp (5.7) 

~/2R 2-R 

[In (5.6) L and 2 are understood to be chosen so as to just satisfy con- 
ditions (5.4) and (5,5). Equation (5.7) is the result of this procedure, up to 
subleading logarithms of R. ] 

This is indeed the result we were looking for. 
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The above considerations did not take into account that there are in 
general many further frustration loops present. These clearly modify the 
ground state configurations and we have to ask whether the above picture 
survives in its essence. 

Clearly further frustration loops on the surface of the tube cannot have 
a negative effect. The most that can happen is that the minimal surface 
takes a checkerboard-like structure, splitting into even more and smaller 
pieces, still covering roughly half of the total surface of the tube. The same 
heuristic arguments then hold, and the expected energy difference will be 
even smaller (see Fig. 7). 

The existence of other large loops close to the ones on the tube inside 
or outside of the tube would possibly favor fluctuations concentrated on a 
somewhat deformed tube, but hardly spoil the overall picture; see also 
Sec. 7. 

Thus it is very plausible that, in dimensions >~3, there exist, with 
probability decaying more slowly than exponentially, excitations of small 
energy that cause long-range correlations. 

Fig. 7. Ground  state configuration on the tube in the presence of further frustration loops. 
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Let us now summarize this discussion. Let F be a dominant ground 
state, and let [F]  denote the class of all those families of contours, F', for 
which A(F, F ' )=0 .  Let 120y be some finite region in ~(a, d~> 3, containing 
two sites, 0 and y. Let F' be the configuration of contours obtained from F 
by flipping all the spins inside f20y (and suppose F '~  [F]). We define 

~E(~oy ,  r )  - E ( r ' )  - ~ ( r ) / >  o 

The heuristic calculations leading to (5.6) and (5.7) suggest that 

dPoy(E) =- Prob{~2Oy I AE(~2o, y, F) ~ [E, E+ dE] } 

1 exp f (E-(lnlyl)2)2~ 3> dE 

Let Pn~p be the probability that there is a spin-flip inside a region con- 
taining 0 or y, but not both. Let/~ be large, and let ( ( . ) ) ,  be a Gibbs state 
in the "vicinity" of/7, (e.g., the support of ( ( . ) ) ,  is contained in I-F]; see 
(5.1)). The mathematical structure of low-temperature expansions suggest 
that, for/~ very large, 

[ ( f ro;  O'y)/~] ~ (1 -- Pnip) e-~e dPoy(E) 

const 
> ( l -- Pflip ) . V / ~  

Pflip 

(5.8) 

Hence 4(//) is divergent if the spin-flip symmetry is broken, i.e., if 
<1. 

6. EQUIVALENCE CLASSES AND GIBBS STATES 

In the last section we have seen that a characteristic feature of the low- 
temperature phase of the spin glass (in d~>3) is the divergence of the 
correlation length, provided the global spin-flip symmetry is broken. This 
divergence was caused by low-lying excitations above a given groundstate. 
In the present section we address the question of the structure of the space 
of Gibbs states themselves. Here we are primarily interested in ground 
states distinguished by different boundary conditions, since they might give 
rise to different disjoint Gibbs states. The tools for this investigation have 
been prepared in Sec. 4. 

We split our discussion in two parts. First, we consider the two-dimen- 
sional case and argue that here the spin-flip symmetry is unbroken, for 
x ~ 1/2, and that consequently there exists a unique Gibbs state, at all tem- 
peratures. We also discuss the possibility of spin-flip symmetry breaking in 

822/44/3-4-7 
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higher, and particularly three, dimensions. We indicate why the two-dimen- 
sional argument does not apply and that, thus, in particular, in view of 
recent numerical results, (4) it does seem plausible that the global spin-flip 
symmetry is broken at low temperatures in three and more dimensions. 

In the second part, we assume broken spin-flip symmetry and discuss 
the ensuing consequences for the structure of low-temperature Gibbs states 
in three and more dimensions. 

6.1. Two Dimensions and Spin-Fl ip  S y m m e t r y  Breaking 

In two dimensions ~b is a collection of sites in the dual lattice, and a 
ground state configuration is a set of shortest connections between pairs of 
them. 

Of course "short" is to be understood here with regard to the distance 
defined through the energy function E(F), which depends on the moduli of 
the J/j. In the case where [J/j[ ~-1, this distance coincides with the usual 
"Manhattan" distance on the lattice. As long as typical individual lines in F 
are shor t - -and from the properties of q~ exhibited in Sec. 3 we know this 
always to be the case--there will not be much difference between the two 
concepts, and we will mostly think in terms of the [J/j[ - 1 case. 

For  small densities of frustrated plaquettes [i.e., x or (1 - x )  small], a 
typical configuration of them consists of pairs of two frustrated plaquettes 
with comparatively large distances between different pairs. The minimal 
Peierls contours will therefore consist of short "strings" connecting the two 
partners in a pair. In this situation, the standard Peierls argument still 
proves the existence of a ferromagnetic (resp. antiferromagnetic) phase 
transition. See, e.g., Avron et a/ .  O4) In fact, numerical simulations indicate 
that a ferromagnetic phase exists as long a s  (27) 

x < 0.12 + 0.04 (6.1) 

(The rigorous proof of Ref. 14 works up to about half that value.) 
As x increases, the density of contour islands grows. Finally, frustrated 

plaquettes start to star-percolate, and Peierls contours are abundant all 
over the lattice. Also, their assignment to pairs of frustrated plaquettes 
becomes highly ambiguous. However, due to the high density of frustrated 
plaquettes, essentially no contours longer than a few lattice units appear in 
a ground state. In fact, this statement can be quantified. The density of 
Peierls contours, ~, in a ground state of the two-dimensional model is 
known from numerical simulations(27); there exist also rigorous lower 
bounds. (28) For  the {J/j=-t-1}-distribution, the numerical value is, for 
x = 1/2, 

= 0.15 -!-_ 0.0025 (6.2) 
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Given the density of sites dual to frustrated plaquettes of 1/2, there are 
x/2~ ,~ 5/3 boundary points per bond in the Peierls contour. Such a high 
density implies an abundance of isolated single bonds. Even if we assume 
that only clusters of one and two bonds exist, it follows that the number of 
clusters with one bond exceeds that of the two-bond clusters by a factor of 
seven! 

We now proceed to argue that this causes the global spin-flip sym- 
metry to remain unbroken in two dimensions. Note that in fact this is the 
only thing we have to worry about in two dimensions. Though in general 
strong equivalence classes are characterized by lines in their symmetric dif- 
ferences, such lines always fluctuate at positive temperatures, ~26) even in the 
frustrated system. In frustrated systems fluctuations around straight lines 
are enhanced and occur already at zero temperature. ~29) Therefore at most 
two Gibbs states, differing by a global spin-flip, would be conceivable. 

Let us consider two ground states, (F, + )  and (/7, - ) ,  related by a 
global spin-flip. To deform (F, + ) into (F, - ) within a box A, we have to 
draw a line, 2, enclosing A and flip all the spins enclosed by 2 (see Fig. 8). 

,',* _ / x .../,. 
\ 

Fig. 8. A loop 2 (dotted line) in a ground state configuration of Peierls contours (solid 
lines). Flipping all spins within 2, and hence in A, costs practically no energy at all. 
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The excess energy, E()t), associated with such a line is clearly 

E ( 2 ) = 2  ~, I J , j l - 2  ~ IJ,jI 
< , J ~  < ~  (6.3) 
(O')q~F ( i j ) ~F  

In order to decide whether such a deformation occurs, one would 
want to know whether ~). e-~e(z) is large or small. If it tends to zero as the 
box A increases, the spin-flip symmetry will be broken (this is the Peierls 
argument);  otherwise, we expect it to remain unbroken. 

First of all, we will now argue that in the spin glass case, the only 
important  contributions to this sum come from lines whose energy is prac- 
tically zero. To understand this, we consider the average contribution of a 
single line 2. We may write 

e -~e(x) = ~ Prob(E(2)  = E) e -~e (6.4) 
E>~0 

Prob(E(2)  = E) depends in general on the particular ground state con- 
sidered and is not at all easy to calculate. It seems, however, reasonable to 
approximate this quantity by replacing F by a configuration of bonds 
occupied according to a Bernoulli bond percolation process with density 
cr 13 Then, 

L Pr~ E/2)/2)cr ~)~L + E/=)/2 (6.5) 

L being the length of 2. But then 

~(L-E/2)/2(1 _ ~)(L+e/=)/= e ~e 
E/4=o (L-- E/2)/2 

= S ~ ( 1 - ~ )  ~ ~e-~(~ ~ 
k = O  

= (1 - ~)Ce-~L ~ e 4/~ (6.6) 
k = 0  

The last sum is essentially equal to its last term, provided fl is 
somewhat large, so that 

13 We limit the discussion to the IJg] =- 1 case. 

> 1 (6.7) 
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For such/~, 

e l~e(x)~(o~(l_e))Ec/21( L ) 1 
[L/21 ~ ( 2 " ~ 1  - 7))L (6.8) 

independent of ft. We see therefore that for a rather large range of tem- 
peratures the question of the breaking of the spin-flip symmetry is solely 
related to the probability of the existence of large lines associated with zero 
energy. If those fail to exist, a finite positive temperature is needed before 
the symmetry can be restored. This situation is quite typical for the spin 
glass, and it is the basic rationale for our definition of weak equivalence 
classes through purely energetic considerations. 

We are now left to decide whether the result (6.8) implies the abun- 
dance of large zero-energy lines or not. This appears to be a rather 
interesting problem of percolation theory in itself, which has to our 
knowledge not received attention in the literature. Note that simply summ- 
ing (6.8) over all lines 2 will not give a good result, since the energies of dif- 
ferent lines are not independent random variables. A rather reasonable 
criterion seems to be given by comparing this question with normal per- 
colation. In a Bernoulli ensemble of bonds occupied with density p, the 
probability for a loop 2 to be made entirely of occupied bonds is simply 
pill. In this case, such loops enclosing arbitrarily large boxes exist with 
probability one above the percolation threshold, i.e., if p > 1/2, while with 
probability one they do not exist for p < 1/2. This leads us to conjecture 
that large zero-energy loops will exist, provided 

1 (6.9) 2,/7 -i 

that is, if 

2-,5 > e, = ~ 0.0675 (6.10) 
4 

Since at, x = 1/2, e = 0.15, this clearly implies that spin-flip symmetry 
is restored at ;.11 temperatures for x near 1/2.14 Furthermore, taking these 
numbers somawhat more seriously than we maybe should, we may 
estimate the critical density above which this should take place. From our 
previous discussion it appears not unreasonable to estimate the density of 
groundstate contours as proportional to the density of frustrated plaquet- 
tes, with the proportionality constant inferred from the values at x = 1/2. 

14 Note  tha t  even a r igorous  lower  b o u n d  for e is l a rger  than  c~ c (Ref. 28). 
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The result of this procedure is 

xc ~ 0.0905 (6.11) 

a value which agrees remarkably welt with numerical values, (6.1), for the 
breakdown of ferromagnetism! 

It is interesting to see what becomes of this argument in three dimen- 
sions. There, the numerical estimate for e is (27) 

c~ ~ 0.21 (6.12) 

The corresponding percolation threshold for the existence of infinite 
closed surfaces of occupied plaquettes is known to be about Pc = 3.(16) Thus 
the three-dimensional analog of (6.9) yields the estimate 

3 
2x/~c(1 - ~ c ) = ~  

o r  

= 1  f-~--7 1 (6.13) 
~c 2 ~ / 6 4 ~ 6  

So, in this case, ec and c~ are rather close together, and rather small 
errors can change the conclusion. In fact, we expect that the approximation 
of the Peierls contour by a Bernoulli ensemble is less reliable in three 
dimensions, and tends to overestimate the probability for surfaces of small 
energy. The reason for this is that in three dimensions, the percolating 
frustration network is the boundary of a Bernoulli plaquette ensemble at 
density x>> c~. The ground state Peierls contour is thus forced to form 
bigger and fewer clusters than would exist in a Bernoulli ensemble at den- 
sity c~. Therefore, the distribution of the plaquettes belonging to the Peierls 
contour is less uniform, and exact cancelations, producing surfaces with 
low energy, are less likely. Thus, although this argument does not suffice to 
demonstrate breaking of the spin-flip symmetry in three dimensions, for 
x-= 1/2, it shows that this is not unplausible. In particular, it shows why 
the behavior in two and three dimensions can be different. This would also 
be in agreement with results of recent numerical simulations. (4) See also 
Sec. 7. 

6.4. Three and M o r e  Dimensions 

We now assume that the global spin-flip symmetry is broken in three 
and more dimensions, and discuss some consequences for the structure of 
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the low-temperature Gibbs states. The situation regarding the possible 
ground states is rather involved in higher dimensions. In contrast to, say, 
an unfrustrated Ising model, it is clearly not possible to find explicitly 
ground state contours for a given frustration network, ~. As we have dis- 
cussed above, this would correspond (for the Jo-- __ 1 case, say) to finding 
the minimal surfaces with given random boundary qs. Such problems, 
known as "first-passage problems" in mathematics, are known to be, even 
numerically for finite systems, extremely hard to solve. 

Luckily, however, even without solving this problem exactly, we can 
give some general characterizations of the ground state contours, which 
allow us to draw some nontrivial conclusions, and to understand some 
features of the spin glass phase at least qualitatively. Our first observation 
is a corollary of our Lemma 3.2: 

If the density of negative Jg, x, is close enough to 1/2, then, with probability 
one, any ground state contour, F, in dimensions d~> 3, contains an infinite, star- 
connected cluster of ( d -  1)-cells. 

Furthermore, we argue that there exist many ground states, corresponding 
to different strong equivalence classes, that are qualitatively 
indistinguishable, i,e., in particular, have essentially the same ground state 
energy and the same symmetry properties. 

To see this, recall that two different strong equivalence classes corres- 
pond to different boundary conditions. Consider a box, A, and the intersec- 
tion ~OOA of 05 with the boundary of this box, 0A. Now, ~b0A represents 
exactly a (d-1)-dimensional frustration network on OA! Thus, boundary 
conditions are nothing but contours of a (d-1)-dimensional spin glass 
that lives on the boundary of A. 

Clearly, boundary conditions that give rise to ground states (in the 
d-dimensional system) with lowest energy correspond, at least roughly, to a 
ground state contour of the (d-1)-dimensional system on OA. Thus, in 
three dimensions, the boundary conditions are contours of a two-dimen- 
sional spin glass on the surface of the box A, and the corresponding ground 
state will have minimal energy, if this contour just pairs sites and does not 
contain any extra loops. 

It is not unreasonable to expect that, if the lengths of two contours 
/~A and /'~A a re  equal, then the corresponding ground state energies 
E A ( F  1) and E A ( F  2) will also be close to each other. 

We have just seen that in two dimensions states of essentially equal 
energy, but differing by a large contour 2, do exist. Therefore, in the three- 
dimensional model, we can have boundary conditions differing by a large 
loop~winding around the box A, say--that give rise to ground states F 1 
and F 2 with very similar energy, whereas [ (F 1 A/'2)~]A is a surface with 
boundary 2, spanning across A. 
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It is obvious that this argument propagates into higher dimensions. 
Note that this situation is dramatically different from that in 

unfrustrated or weakly frustrated systems. There, also, many strong 
equivalence classes can exist; however, there are just two of them, related 
by spin-flip, that are distinguished by having minimal energy and a 
"minimal boundary condition." They correspond, at low temperatures, to 
two "bulk" Gibbs states (in unfrustrated systems these are the translation- 
invariant Gibbs states). In addition there may exist additional Dobrushin 
states, (25) which have higher energy and are naturally viewed as com- 
positions of these "bulk" states separated by externally enforced interfaces. 

What can be concluded in the highly frustrated spin glass? Clearly, we 
want to know whether the structure of strong equivalence classes implies 
an analog structure of Gibbs states at low temperatures. To answer this 
question, two points have to be addressed. 

(i) Are there strong equivalence classes (in the thermodynamic limit)? 
Clearly we have seen that by choosing appropriate boundary conditions on 
a finite box A, we can obtain two ground states (for this finite volume A) 
whose symmetric difference is a surface spanning across A. The question to 
address is whether as A ~ oo this surface remains sufficiently rigid so that 
the limiting infinite-volume ground states have a symmetric difference that 
intersects with finite probability finite boxes localized around the origin. 

(ii) Are there infinite energy barriers between different equivalence 
classes, i.e, is there also a rich structure of weak equivalence classes? An 
affirmative answer to this question does not prove, but strongly hints, at 
the existence of many Gibbs states, while a negative one does exclude this 
possibility. 

Let us first address question (i). Clearly, considering two states differing by 
a global spin-flip, their symmetric difference encloses all of A and thus also 
all finite regions f2. Therefore, from this point of view, the possibility of 
having two disjoint Gibbs state differing by a global spin-flip exists in all 
dimensions. 

Consider now two boundary conditions that differ by some loop )o on 
OA. The symmetric difference [-(F 1 A/'2)co]A of the corresponding two 
ground states is a surface bounded by 2, such that EA(F 1 A[(F t AF2)oo]A) 
is minimal. If such a surface is typically rigid, i.e., is roughly a minimal sur- 
face of 2, we may force it to pass through a prescribed domain g2 by 
appropriately choosing 2. Therefore, states with different 2 are dis- 
tinguishable by local observables. If, on the contrary, this surface is 
"rough," its position in the interior of the system becomes undetermined as 
A grows, and we cannot expect to obtain disjoint Gibbs states in this way. 
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Which of the two possibilities is realized will depend on the dimen- 
sionality, and from general experience we expect increasing rigidity as the 
dimensionality grows. Which dimension is the critical one is not completely 
obvious. From experience with interfaces in dilute ferromagnets (a problem 
that is somewhat similar to the present question, but in itself highly non- 
trivial), we expect rigidity to occur in four dimensions, (29~ while in three 
dimensions we still expect divergent fluctuations. If this analogy holds, this 
would imply that in the three-dimensional spin glass there are at most two 
disjoint Gibbs states, corresponding to the breaking of the global spin-flip 
symmetry. The existence of many ground states would only show up in 
dynamical effects. Due to extremely large relaxation times associated with 
the fluctuations of such interfaces, metastability, hysteresis, and pseudo- 
nonergodicity should be observed. In fact, it might be hard to distinguish 
this situation experimentally from one where actually infinitely many Gibbs 
states exist. ~5 

In higher dimensions, with interfaces becoming rigid, we should expect 
infinitely many Gibbs states. As argued in Sec. 4, the quantity J should 
provide a reliable measure for energy barriers, and weak equivalence 
classes should indeed correspond to low-temperature Gibbs states. If 
IF ~ AF2]~ has dimension bigger than one, the energy barrier between F 1 
and F 2, so measured, will be infinite, and F ~ and F 2 correspond to disjoint 
Gibbs states at low temperature. Due to the presence of the infinite 
frustration network, rather bizarre objects may arise as symmetric differen- 
ces between ground states. In particular, objects with noninteger Hausdorff 
dimension, between 1 and d, are conceivable. These correspond to a spec- 
trum of values for z1(F ~, F2). It is tempting to conjecture that this will 
result in a (continuous) sequence of phase transitions below some 
critical Tc. 

This may not be of great practical importance, since actual spin 
glasses do not exist in more than three dimensions. However, it makes con- 
tact with recent findings in the mean-field model, where, as now seems 
generally accepted, infinitely many low-temperature Gibbs state, arranged 
in a generation tree, have been discovered. This is in accordance with our 
argument that a spectrum of different, positive values of the energy barrier 
J will appear in sufficiently large dimensions. Since J is an ultrametric, the 
structure of Gibbs states emerging from our analysis appears to be closely 
related to that found in the Sherrington-Kirkpatrick model. Our con- 
siderations do, however, also indicate that the situation especially in three 
dimensions is delicate, and that mean-field results may not be adequate to 
describe it. 

15 Such questions have recently been discussed in the random-field lsing model (Ref. 30). 
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7. PERCOLATION T H R E S H O L D S  
IN THE SPIN GLASS P R O B L E M ,  C O N C L U S I O N S  

In this section we briefly recapitulate once more the different per- 
colation phenomena encountered in our analysis of the spin glass problem 
and relate them to different features of the physics of spin glasses at low 
temperatures. This also provides us with a summary of some of the basic 
points of view adopted in this paper to construct our picture of spin glasses 
at low temperatures. 

In Sec. 3 we have proven that, in three or more dimensions and for x 
sufficiently close to 1/2, a unique, infinite, connected network, 0 5 ,  of 
frustration is present (almost surely). A preliminary computer study 
indicates that this is the case for 

x b < x <  1 - - x  b 

where xb ~ 0.09, and that the density, Poo, of 05~ behaves like 

O~ ~ ( x -  x y  F 

with flr~0.3. The value Xb--Xc(1) of X at which q 5  disappears is a new 
threshold of bond percolation in dimension d>~ 3. For  reasons apparent 
from our discussion in Sec. 4-6 and below it would be most desirable to 
carry out a more detailed analysis--analytic and numerical--of  the per- 
colation of frustration. 

The existence of an infinite frustration network, q~o~, for x sufficiently 
close to 1/2 has some important consequences for the spin glass problem: 

(i) It proves that every configuration of spins in a glass has one 
infinite star-connected, gauge-invariant 16 contour, F ~ ,  such that 

0Fo~ = q ~  (7.1) 

But even an Ising ferromagnet may exhibit an infinitely extended, con- 
nected contour in every spin configuration contributing to an extremal 
Gibbs or ground s t a t e / f  appropriate boundary conditions are imposed. Such 
states are the so-called Dobrushin states. They are inhomogeneous and 
break translation invariance. Physically, they describe the coexistence of a 
domain where the spins are primarily up with a domain where the spins are 
primarily down. In contrast, configurations in homogeneous states at low 
temperatures exhibit only a dilute gas of finite, closed contours whose 
probability is exponentially small in their length. Dobrushin states are 
stable against thermal fluctuations above two dimensions and are expected 
to survive up to T -  Tc (Ising) in four or more dimensions. 

16 Provided the external magnetic field vanishes as we always assume. 
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The existence of an infinite frustration network and of an infinite star- 
connected contour in every configuration of spins shows that in a spin 
glass, with x close to 1/2, there is no distinction between inhomogeneous 
(Dobrushin) states and homogeneous states. The infinite contour is always 
space-filling, and its Hausdorff dimension is the dimension, d, of the lattice, 
even at zero temperature. 

(ii) The existence of q 5  and f '~ leads to the purely geometrical, or 
topological, notion of strong equivalence classes of  ground or Gibbs states; 
see Sec. 4. Two states # and k~' are strongly equivalent iff, for every F~ 
supp/~ and every F' ~ supp #', IF  31"] ~ is a union of finite closed surfaces. 

A ~ ~ d  By considering sequences of finite boxes, ( n)n=0, increasing to and 
imposing suitable boundary conditions on OAn, and by joining up elements 
of q 5  c~ 0An by ( d -  2)-dimensional surfaces contained in c~An, for each n, 
one can construct states # and/~' such that ( [TAF']~)c~A n cannot be a 
union of finite closed surfaces properly contained in An, for all T~ supp/~, 
U ~ s u p p y ,  and all n. However, the probability that (EF3U]~)c~An 
intersects an arbitrary, given finite box A may tend to zero, as n-~ ~ ,  
because of divergent fluctuations of the coarse-grained position of 
I F  AT'] ~. The problem of constructing strongly inequivalent states,/~ and 
/~', is thus tied to the fluctuations of surfaces of the form EFAT']~.  
Inequivalent states will exist only if the fluctuations of the coarse-grained 
position of [ - T 3 F ] ~  remain bounded with probability one. By analogy 
with dilute Ising ferromagnets we expect that fluctuations remain bounded 
if the dimension of [ T A F ' ] ~  is larger than two. This can be arranged in 
dimensions d>4.  (Thermal fluctuations of steps on [FAF ' ]~  may 
delocalize IF  3 U ]  ~ in dimensions d <~ 4.) Whether a spin glass phase with 
infinitely many inequivalent Gibbs states really exists at small, but finite, 
temperatures in d~> 4 is tied to the question whether the rate of divergence 
of energy barriers, A((F, a), (U, a')) (see See. 4) is positive or not. If global 
spin-flip symmetry is broken, i.e., the Edwards-Anderson order parameter 

qEA= lim ~ ~ ~a~)~ (7.2) 

is positive, then A is expected to be equivalent to the more geometrical 
quantity J (see Sec. 4), as we have argued in Sec. 4. Moreover, we expect 
J(F,  U)  to be positive if the (Hausdorff) dimension of ([-F 3F'] ~) is larger 
than two. 

We note that a distance between/~ and #' can be defined as follows: 

3(#, ~') - f f  3(F, P') d#(r) d#'(F') (7.3) 
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But we must expect that 

~(~, ~') = ~(r, F )  

for almost all F e supp #, F' ~ supp/~'[ 
In conclusion, we expect that, in dimension d~> 4 and for T >  0 suf- 

ficiently small, there exists an infinity of Gibbs states at a positive distance 
zl from each other, provided qEA > 0, for all these states. The metric defined 
by J turned out to be an ultrametric. 

The positivity of qEA(#) is connected to another percolation process 
that we recall next. Let (F, a) be some ground state. Consider a con- 
figuration (F', a') and define 

w(r, (7.4) 

Clearly 8W(F, F') = ~ .  In order to construct (F', o-') from (F, a), all 
spins inside W(F, F') must be flipped. The energy difference between (F, ~) 
and (F', a') is given by 

e(W(F, F ' ) ) -E(F' ) -E(F)= ~ IJ~l- ~ IJijL (7.5) 
( i j ) *  E W c~  F '  ( i j ) *  ~ Wc~  F 

which is nonnegative by the definition of ground states. We call 
e(W(F, F')) the energy of the wall excitation W(F, F'). Generally e(W) 
may grow more slowly than the surface area I wI of w. If typically 
~(W)/I wI--, 0, as I Wl--, ~ ,  then wall excitations will percolate, because 
the entropy of a wall W is proportional to I W[. We define xc(2) to be the 
percolation threshold for wall excitations. More precisely, we let xc(2) be 
the value of x such that, for x c ( 2 ) < x <  1-xc(2) ,  there exist, for any 
dominant ground state F s ~# and with probability one, connected wall 
excitations W enclosing arbitrarily large cubes centered at the origin such 
that ~(W)/[ WI ~ O, as [ WI ~ oe. (It is reasonable to replace the condition 
"e(W)/I WI ~ 0" by "~(W) remains uniformly bounded," as [WI ~ oe.) 

Clearly, for these values of x, we expect the global spin-flip symmetry 
to remain unbroken, i.e., qeA(#)=O, for any Gibbs state /~ (at least at 
positive temperature). The concept of percolation of finite-energy wall 
excitations easily extends to the positive temperature formalism. 

In Sec. 6 we have presented what we believe to be a convinving case 
for the conjecture that, in two dimensions, 

1 
xc(2) < ~  (7.6) 

We have also argued, less convincingly, that in dimension d ~> 3, x~(2) 
does not exist, i.e., wall excitations of finite energy above a ground state 
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energy never percolate for d >~ 3, and hence one expects that, at low enough 
temperature, there exist extremal Gibbs states, ~t, with qEA(/Z)>0. (We 
return to this conjecture below.) 

It might be worthwhile to study the percolation of wall excitations of 
bounded energy within a simple model of Bernoulli percolation of ( d -  1 )- 
cells of density x. Let W be a closed (d-1)-dimensional  surface in y,d. 
Given a configuration F of occupied ( d -  1)-cells of a Bernoulli process, we 
define 

~ ( w ) ~  II w ~  F I -  I w~w~/~rl (7.7) 

The questions are whether 

-- there exist infinitely extended walls W with finite e(W); 

-- there exist walls W enclosing arbitrarily large cubes centered at the 
origin such that e(W) remains uniformly bounded. 

In Sec. 5 we have argued that the correlation lenght ~(B) diverges for spin 
glasses in three or more dimensions, if x is sufficiently close to l/2 and T is 
small enough. This was derived from 

--global spin-flip symmetry breaking; 

- - the  existence of wall excitations, W(F, F'), enclosing the sites 0 and y 
such that 

~(w(r, r,)) 
ryl +0, as Jyl ~ oo (7.8) 

for dominant ground states F e  f#, with probability decreasing to zero 
less than exponentially rapidly, as [y[ ~ oo. Let ~WOy be the event that, 
for ground states F, there exist connected walls, W(F, F'), enclosing 0 
and y such that e(W(F, F'))~< constlyl ~, with c~< 1. Let xc(3) be such 
that, for x,.(3)<x< 1 -Xc(3), 

lim 1 
lYl  ~ c o  ~-~ in Prob(~C/oy ) = 0 (7.9) 

In Sec. 5 we have presented a calculation which strongly suggests that 
x+(3) < 1/2, in arbitrary dimensions d>~ 2. 

Hence, to conclude that the correlation length of an Ising spin glass 
diverges at low enough temperature in three or more dimensions, it suffices 
to show that the global spin-flip symmetry is broken for some x > xc(3). If 
xc(3) is well below 1/2, the calculations in Sec. 6 make it rather plausible 
that xc(2) is strictly larger than xc(3), [even if xc(2) may turn out to be 
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slightly smaller than 1/2]. ~7 More careful heuristic estimates of these two 
threshold would thus be highly desirable! 

Properties of wall excitations, the behavior of prob(~oy), as mY1 ~ o% 
and the idea that in three or more dimensions xc(3)<Xc(2) can all be 
tested for the ~ Bernoulli process of ( d -  1)-cells as described above. 
[See, in particular, (7.7)!] This points to some fascinating problems in 
ordinary d-dimensional bond percolation [dual to the percolation of 
(d-1)-cells] which may actually be solvable, at least with the help of a 
computer. 

We should recall that our entire analysis of low-temperature Ising spin 
glasses has been carried out in zero magnetic field. It would be interesting 
to study the effect of external magnetic fields, h. One might expect to see 
sequences of transitions as T and h are varied. 

In conclusion, we hope that, although we have not solved the spin 
glass problem, we have at least succeeded in posing it in a clearer way, in 
providing some hints of what the solution may look like and in exploring 
some possibilities that may make a solution more accessible. We also feel 
that we have isolated some partial aspects of the spin glass problem and 
some novel questions in bond percolation theory which may be more 
accessible to presently available analytical and numerical methods than the 
full-fledged spin glass problem. Some of those are presently being 
investigated. 
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